Event geometrical anisotropy and fluctuation viewed by HBT interferometry

Takafumi Niida University of Tsukuba

WPCF2014, Gyöngyös, Hungary

Event shape engineering with HBT at the PHENIX experiment

Contents

Event twist selection with HBT with AMPT model

Event shape engineering with HBT at the PHENIX experiment

Event shape engineering

- Event shape engineering (ESE)
 - J. Schukraft et al., arXiv:1208.4563
 - Selecting e-b-e v₂ by the magnitude of flow vector

$$Q_{2,x} = \sum w_i \cos(2\phi)$$

$$Q_{2,y} = \sum w_i \sin(2\phi)$$

$$Q_2 = \sqrt{Q_{2,x}^2 + Q_{2,y}^2} / \sqrt{\sum w_i}$$

$$\Psi_2 = \tan^{-1}(\frac{Q_{2,y}}{Q_{2,x}})$$

- Possibly control the initial geometry
- ▶ More accurate connection between initial and final source eccentricity?
 - Azimuthal HBT w.r.t Ψ₂

J.Schukraft et al., arXiv:1208.4563

Measurement at PHENIX

beam

$$\vec{k}_T = (\vec{p}_{T1} + \vec{p}_{T2})/2$$
$$\vec{q}_o \parallel \vec{k}_T, \vec{q}_s \perp \vec{k}_T$$

- Reaction Plane Detectors (RxNP) (1< $|\eta|$ <2.8)
- Res(Ψ₂)~75%

Charged pion Identification

- Electromagnetic calorimeter (EMCal) ($|\eta|$ <0.35)
- using time-of-flight at EMCal

▶ HBT measurement

- $\triangleright \pi \pi$ -correlation
- Core-halo picture with out-side-long frame

$$C_2 = C_2^{core} + C_2^{halo}$$

$$= [\lambda(1+G)F_{coul}] + [1-\lambda]$$

$$G = \exp(-R_s^2 q_s^2 - R_o^2 q_o^2 - R_l^2 q_l^2 - 2R_{os}^2 q_s q_o)$$

How to apply the ESE

- 1. Q2 distribution measured by RxNP
- 2. Fitted with the Bessel-Gaussian function

$$f_{BesselGaus} = \frac{x}{\sigma} I_0(\frac{x_0 x}{\sigma^2}) \exp(-\frac{(x_0^2 + x^2)}{2\sigma^2})$$

3. Select higher or lower Q2 events

Resolutions of event planes were estimated by 3-sub method using RxNP($1<|\eta|<2.8$) and BBC($3<|\eta|<3.9$) applying Q₂ selection.

Charged hadron v2 with ESE

- ▶ Test of the event shape engineering for v₂ in Au+Au 200GeV collisions
 - v_2 measured at mid-rapidity ($|\eta|$ <0.35)
 - Q₂ and EP determined at $1 < |\eta| < 2.8$
- Confirmed that higher(lower) Q2 selects larger(smaller) v2

HBT radii w.r.t Ψ2 with ESE

- Applying the ESE to azimuthal HBT
 - charged π π -correlation measured at mid-rapidity ($|\eta|$ <0.35)
 - Q₂ and EP determined at $1 < |\eta| < 2.8$
- ▶ Oscillations of R_s and R_o become larger when selecting higher Q₂

HBT radii w.r.t Ψ₂ with ESE (R_I and R_{os})

▶ Oscillation of R_I doesn't change, while R_{os} increases when selecting higher Q₂ events as well as R_s and R_o

Freeze-out eccentricity vs Npart with ESE

- \triangleright Efinal ~ $2R_{s,2}^2/R_{s,0}^2$
 - F. Retiere and M. A. Lisa, PRC70.044907
 - at the limit of $k_T=0$

- ► Higher Q₂ selection increases the measured ε_{final}
 - Selected more elliptical source at freeze-out?
 - \odot might be originated from ε_{init} with larger Q₂(v₂)
 - Or just v₂ effect?

Event twist selection with HBT with AMPT model

Twisted source?

$$N_{part}^{B} \neq N_{part}^{F}$$

$$\varepsilon_{n}^{B} \neq \varepsilon_{n}^{F}$$

$$\Psi_{part,n}^{B} \neq \Psi_{part,n}^{F}$$

- ▶ Twisted fireball due the density fluctuation of wounded nucleons going to forward and backward directions
 - P. Bozek et al., PRC83.034911
- Also known as "event plane decorrelation"
 - K. Xiao et al., PRC87.011901
 - \odot decorrelation increases with increasing η -gap

 \triangleright v_n may be underestimated, which might lead to overestimating η /s

Event twist selection

J.Jia et al., arXiv:1403.6077

$$C(\Delta\phi, \Delta\eta) \propto 1 + 2\Sigma v_n^a v_n^b \cos(n\Delta\phi - n\Delta\phi_n^{rot})$$

- ▶ Twist effect on anisotropic flow&2PC studied with AMPT
 - Requiring finite difference b/w forward and backward EPs (Ψ₂^B-Ψ₂^F)
- \blacktriangleright Twist effect appears as a phase shift in $\Delta φ$ - $\Delta η$ correlation
 - o initial twist survives as a final state flow in momentum space
- ▶ How about in spatial coordinate space?

HBT study in AMPT

- ▶ AMPT model
 - ver.2.25 (string melting)
 - Pb+Pb 2.76 TeV collisions, b=8fm
 - initial fluctuation based on Glauber model and final state interaction via transport model
- ▶ EP determination at $4<|\eta|<6$

- ▶ HBT analysis
 - ▶ Add HBT correlation $(1+\cos(\Delta r \Delta q))$ between two pion pairs
 - ▶ Allowing to take $\pi + \pi$ pairs to increase statistics
 - \blacktriangleright confirmed a good agreement between $\pi^+\pi^+$ and $\pi^-\pi^-$
 - ▶ No EP resolution correction
 - ▶ Bowler-Sinyukov C₂

$$C_2 = 1 + \exp(-R_s^2 q_s^2 - R_o^2 q_o^2 - R_l^2 q_l^2 - 2R_{os}^2 q_o q_s - 2R_{ol}^2 q_o q_l - 2R_{sl}^2 q_s q_l)$$

HBT radii w.r.t backward Ψ2

backward

- ▶ Selected events with $(\Psi_2^B \Psi_2^F) > 0.6$
- ▶ Phase shift can be seen, and data are fitted with cosine(sine) function including a phase shift parameter α

$$R_{\mu}^{2} = R_{\mu,0}^{2} + 2R_{\mu,2}^{2}\cos(2\Delta\phi + \alpha)$$

$$R_{\mu}^{2} = 2R_{\mu,2}^{2}\sin(2\Delta\phi + \alpha)$$

HBT radii w.r.t forward Ψ2

- ▶ Selected events with $(\Psi_2^B \Psi_2^F) > 0.6$
- ▶ Phase shift can be seen, and data are fitted with cosine(sine) function including a phase shift parameter α

$$R_{\mu}^{2} = R_{\mu,0}^{2} + 2R_{\mu,2}^{2}\cos(2\Delta\phi + \alpha)$$

$$R_{\mu}^{2} = 2R_{\mu,2}^{2}\sin(2\Delta\phi + \alpha)$$

HBT radii w.r.t $\Psi_2^{B(F)}(\eta < 0)$

$$R_{\mu}^{2} = R_{\mu,0}^{2} + 2R_{\mu,2}^{2}\cos(2\Delta\phi + \alpha)$$
$$R_{\mu}^{2} = 2R_{\mu,2}^{2}\sin(2\Delta\phi + \alpha)$$

- Selected events with (Ψ₂^B-Ψ₂^F)>0.6
- ▶ Phase difference between Ψ_2^B and Ψ_2^F can be seen in R_s, R_o, and R_{os}

η-dependence of phase shift

$$R_{\mu}^{2} = R_{\mu,0}^{2} + 2R_{\mu,2}^{2}\cos(2\Delta\phi + \alpha)$$

$$R_{\mu}^{2} = 2R_{\mu,2}^{2}\sin(2\Delta\phi + \alpha)$$

- ▶ Phase shifts become larger with going far from η of a reference EP (-6< η <-4 or 4< η <6)
- Source at freeze-out might be also twisted as well as EP angles
 - It may include the effect from twisted flow
- ▶ This twist effect could be measured experimentally

Summary

- Event shape engineering at PHENIX
 - Azimuthal HBT measurement with the event shape engineering have been performed in Au+Au 200GeV collisions
 - Higher Q₂ selection enhances the measured ε_{final} as well as v₂
 - More accurate relation between initial and final eccentricity
- Event twist selection with AMPT model
 - ▶ A possible twisted source have been studied via HBT measurement with AMPT Pb+Pb 2.76TeV collisions
 - ▶ Phase shifts of HBT oscillations are seen as a function of η , possibly indicating the twisted source at final state
 - ▶ This effect might be measured in RHIC and the LHC, especially in ATLAS or CMS

Back up

Event-by-event vn at ATLAS

Oscillation amplitudes as a function of Npart with ESE

HBT radii w.r.t Ψ2^B

- ▶ Selected events with $(\Psi_2^B \Psi_2^F) > 0.6$
- ▶ Phase shift can be seen, and become larger with going far from η of EP for a reference angle (-6< η <-4)

HBT radii w.r.t $\Psi_2^{B(F)}(\eta > 0)$

- Selected events with (Ψ₂^B-Ψ₂^F)>0.6
- ▶ Phase difference between Ψ_2^B and Ψ_2^F can be seen in R_s, R_o, and R_{os}